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CHAPTER 1

Introduction

• Experimenters choice before fast computers

◦ Describe an accurate model which would
usually preclude the computation of explicit
answers

◦ or choose a standard model which would
allow this computation, but may not be a
close representation of a realistic model.

• Such problems contributed to the develop-
ment of simulation-based inference
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1.1 Statistical Models

Example 1.1.1 –Censored data models–
— are missing data models where densities are
not sampled directly.

In a typical simple statistical model, we would
observe

Y1, · · · , Yn ∼ f (y|θ).
The distribution of the sample would then be

given by the product
n∏

i=1
f (yi|θ).

Inference about θ would then be based on this
distribution.
With censored random variables the actual

observations are

Y ∗
i = min{Yi, u}

where u is censoring point.

As a particular example, if

X ∼ N (θ, σ2)andY ∼ N (µ, ρ2),

the variable

Z = X ∧ Y = min(X,Y )

is distributed as
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1− Φ
z − θ

σ


 × ρ−1ϕ

z − µ

ρ



+

1− Φ

z − µ

ρ


 σ−1ϕ

z − θ

σ


where ϕ and Φ are the density and cdf of the
normal N (0, 1) distribution.

Similarly, if

X ∼ Weibull(α, β),

with density

f (x) = αβxα−1 exp(−βxα)

the censored variable

Z = X ∧ ω, ωconstant,

has the density

f (z) = αβzαe−βzα
IIz≤ω+

(∫ ∞
ω αβxαe−βxα

dx
)
δω(z) ,

where δa(·) is the Dirac mass at a. ‖
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Example 1.1.2 –Mixture models–
Models of mixtures of distributions are based

on the assumption

X ∼ fj with probability pj,

for j = 1, 2, . . . , k, with overall density

X ∼ p1f1(x) + · · · + pkfk(x) .

If we observe a sample of independent random
variables (X1, · · · , Xn), the sample density is

n∏
i=1
{p1f1(xi) + · · · + pkfk(xi)} .

Expanding this product shows that it involves
kn elementary terms, which is prohibitive to
compute in large samples. ‖
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Example 1.1.3 –Student’s t distribution–
An reasonable alternative to normal errors is
the Student’s t distribution, denoted by T (p, θ, σ),
which is often more “robust” against possible
modeling errors (and others). The density of
T (p, θ, σ) is proportional to

σ−1

1 +
(x− θ)2

pσ2


−(p+1)/2

,

If p is known and the parameters θ and σ are
unknown, the likelihood is

σnp+1
2

n∏
i=1

1 +
(xi − θ)2

pσ2

 .

This polynomial of degree 2n may have n local
minima, each of which needs to be calculated
to determine the global maximum.
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Illustration of the multiplicity of modes of the
likelihood from a Cauchy distribution C(θ, 1)
(p = 1) when n = 3 and X1 = 0, X2 = 5,
X3 = 9. ‖

5.5in5.5in/work/short/mcmcv22/figures/bmp/cauchy.bmp
Figure 1.1.1. Likelihood of the sample (0, 5, 9) from the distribution C(θ, 1).
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Random Variable Generation

• We rely on the possibility of producing (with
a computer) a supposedly endless flow of ran-
dom variables (usually iid) for well-known
distributions.

• We look at a uniform random number gener-
ator and illustrate methods for using these
uniform random variables to produce ran-
dom variables from both standard and non-
standard distributions
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2.1 Basic Methods

2.1.1 Desiderata and Limitations

“Any one who considers arithmetical methods of reproduc-
ing random digits is, of course, in a state of sin. As has been
pointed out several times, there is no such thing as a ran-
dom number—there are only methods of producing random
numbers, and a strict arithmetic procedure of course is not
such a method.” –John Von Neumann (1951)

• The problem is to produce a deterministic
sequence of values in [0, 1] which imitates
a sequence of iid uniform random variables
U[0,1].

• Can’t use the physical imitation of a “ran-
dom draw” (no guarantee of uniformity, no
reproducibility)

• random sequence in the following sense: Hav-
ing generated (X1, · · · , Xn), knowledge of Xn

[or of (X1, · · · , Xn)] imparts no discernible
knowledge of the value of Xn+1.

• Of course, given the initial value X0, the sam-
ple (X1, · · · , Xn) is always the same.

• the validity of a random number generator is
based on a single sample X1, · · · , Xn when n
tends to +∞ and not on replications (X11, · · · , X1n),
(X21, · · · , X2n), . . . (Xk1, · · · , Xkn) where n
is fixed and k tends to infinity.

• In fact, the distribution of these n-tuples de-
pends on the manner in which the initial val-
ues Xr1 (1 ≤ r ≤ k) were generated.
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2.2 Transformation Methods

• The case where a distribution f is linked in a
relatively simple way to another distribution
that is easy to simulate.

Example 2.2.1 –Exponential variables–
If U ∼ U[0,1], the random variable

X = − log U/λ

has distribution

P (X ≤ x) = P (− log U ≤ λx)

= P (U ≥ e−λx)

= 1− e−λx,

the exponential distribution Exp(λ). ‖

• Other random variables that can be gener-
ated starting from an exponential include
◦

Y = −2
ν∑

j=1
log(Uj) ∼ χ2

2ν

◦
Y = −β

a∑
j=1

log(Uj) ∼ Ga(a, β)

◦

Y =
∑a

j=1 log(Uj)∑a+b
j=1 log(Uj)

∼ Be(a, b)
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2.3 Accept-Reject Methods

• There are many distributions from which it
is difficult, or even impossible, to directly
simulate.

• We now turn to another class of methods that
only requires us to know the functional form
of the density f of interest up to a multiplica-
tive constant.

• The key to this method is to use a simpler
(simulation-wise) density g from which the
simulation is actually done.

◦ For a given density g
— the instrumental density

◦ there are many densities f
—the target densities

which can be simulated this way.
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• We first look at the Accept-Reject method.

◦ Given a density of interest f ,
◦ find a density g and a constant M such that

f (x) ≤ Mg(x)

on the support of f .

◦Algorithm A.1 –Accept-Reject Method–

1. Generate X ∼ g, U ∼ U[0,1] ;

2. Accept Y = X if U ≤ f (X)/Mg(X)
;

3. Return to 1. otherwise.

This produces a variable Y distributed
according to f .
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• This Algorithm has two interesting proper-
ties.

◦ First, it provides a generic method to sim-
ulate from any density f that is known up
to a multiplicative factor.

� This property is particularly important in
Bayesian calculations. There the posterior
distribution is

π(θ|x) ∝ π(θ) f (x|θ) .

which is easily specified up to a normaliz-
ing constant

◦ A second property of the lemma is that the
probability of acceptance in the algorithm
is exactly 1/M .

� The expected number of trials until a vari-
able is accepted is M
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Example 2.3.1 –Normal from a Cauchy–

•
f (x) =

1√
2π

exp(−x2/2)

and

g(x) =
1

π

1

1 + x2
,

densities of the normal and Cauchy distribu-
tions.

•
f (x)

g(x)
=

√√√√√π

2
(1 + x2) e−x2/2 ≤

√√√√√√2π

e
= 1.52

attained at x = ±1.

• So the probability of acceptance 1/1.52 =
0.66, and, on the average, one out of every
three simulated Cauchy variables is rejected.

• The mean number of trials to success is 1.52.

‖
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Example 2.3.2 Gamma with non-integer
shape parameter

• This illustrates a real advantage of the Accept-
Reject algorithm.

• the gamma distribution Ga(α, β) can be rep-
resented as the sum of α exponential random
variables.

• This is impossible if α is not an integer

• Can use the Accept-Reject algorithm with
instrumental distribution

Ga(a, b), with a = [α], α ≥ 0.

(Without loss of generality, β = 1.)

• Up to a normalizing constant,

f/gb = b−axα−a exp{−(1−b)x} ≤ b−a

 α− a

(1− b)e


α−a

for b ≤ 1.
The maximum is attained at b = a/α.

‖
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Example 2.3.3 Truncated Normal dis-
tributions.

• Truncated Normals appear in many con-
texts

• When constraints x ≥ µ produce densities
proportional to

e−(x−µ)2/2σ2
IIx≥µ

for a bound µ large compared with µ,

◦ there are alternatives which are far supe-
rior to the näıve method of generating a
N (µ, σ2) until exceeding µ.

◦ This approach requires an average number
of 1/Φ((µ−µ)/σ) simulations fromN (µ, σ2)
for one acceptance.

• An instrumental distribution is the translated
exponential distribution, Exp(α, µ), with den-
sity

gα(z) = αe−α(z−µ) IIz≥µ .

• The ratio f/gα is then bounded by

f/gα ≤

1/α exp(α2/2− αµ) if α > µ,
1/α exp(−µ2/2) otherwise.

‖





CHAPTER 3

Monte Carlo Integration

• Two major classes of numerical problems that
arise in statistical inference

◦ optimization - generally associated with
the likelihood approach

◦ integration- generally associated with the
Bayesian approach
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3.1 Importance Sampling

• Simulation from f (the true density) is not
necessarily optimal, in fact, it is usually sub-
optimal.

• The alternative to direct sampling from f is
importance sampling.

Definition 3.1.1 The method of importance
sampling is an evaluation of

IEf [h(X)] =
∫
X h(x) f (x) dx .

based on generating a sample X1, . . . , Xn from
a given distribution g, and approximating

IEf [h(X)] ≈ 1

m

m∑
j=1

f (Xj)

g(Xj)
h(Xj) .

This method is based on the alternative rep-
resentation

IEf [h(X)] =
∫
X

h(x)
f (x)

g(x)

 g(x) dx .
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• The estimator

IEf [h(X)] ≈ 1

m

m∑
j=1

f (Xj)

g(Xj)
h(Xj)

→
∫
X h(x) f (x) dx

◦ converges for same reason the regular Monte
Carlo estimator hm converges;

◦ converges for any choice of the distribution
g [as long as supp(g) ⊃ supp(f )].

◦ The instrumental distribution g can be cho-
sen from distributions that are easy to sim-
ulate.

◦ The same sample (generated from g) can
be used repeatedly, not only for different
functions h but also for different densities
f .
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Example 3.1.2 –Student’s t distribution–
Consider X ∼ T (ν, θ, σ2), with density

f (x) =
Γ((ν + 1)/2)

σ
√

νπ Γ(ν/2)

1 +
(x− θ)2

νσ2


−(ν+1)/2

.

Without loss of generality, take θ = 0, σ = 1.

• Calculate the integral∫ ∞
2.1 x5f (x)dx.

• Simulation possibilities

◦ Directly from f , since f = N (0,1)√
χ2

ν

◦ Importance sampling using Cauchy C(0, 1)
◦ Importance sampling using a normal

(expected to be nonoptimal).
◦ Importance sampling using a U([0, 1/2.1])
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• The figure shows

◦ Uniform is best
◦ Cauchy is OK
◦ f and Normal are rotten

‖
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Markov Chains

• Use of Markov chains

◦ Many algorithms can be described as Markov
chains

• Needed properties

◦ The quantity of interest is what the chain
converges to

• We need to know

◦ When will chains converge
◦ What do they converge to

4.1 Basic notions

• A Markov chain is a sequence of random
variables that can be thought of as evolving
over time.

• The probability of a transition depending on
the particular set that the chain is in

• We define the chain in terms of its transition
kernel, the function that determines these
transitions.
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Definition 4.1.1 A transition kernel is a func-
tion K defined on X × B(X ) such that

(i) ∀x ∈ X , K(x, ·) is a probability measure;
(ii) ∀A ∈ B(X ), K(·, A) is measurable.

• When X is discrete, the transition kernel
simply is a (transition) matrix K with ele-
ments

Pxy = P (Xn = y|Xn−1 = x) , x, y ∈ X .

• In the continuous case, the kernel also de-
notes the conditional density K(x, x′) of the
transition K(x, ·). That is,

P (X ∈ A|x) =
∫
A K(x, x′)dx′.

Definition 4.1.2 Given a transition kernel
K, a sequence X0, X1, . . . , Xn, . . . of random
variables is a Markov chain, denoted by (Xn),
if, for any t, the conditional distribution of Xt

given xt−1, xt−2, . . . , x0 is the same as the dis-
tribution of Xt given xt−1. That is,

P (Xk+1 ∈ A|x0, x1, x2, . . . , xk)
= P (Xk+1 ∈ A|xk)
=

∫
A K(xk, dx)
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4.2 Ergodicity and convergence

• We consider: to what is the chain converg-
ing?

• The invariant distribution π is the natural
candidate for the limiting distribution

• A fundamental property is ergodicity, or in-
dependence of initial conditions.

◦ In the discrete case with a state ω is ergodic
if

lim
n→∞ |Kn(ω, ω)− π(ω)| = 0 .

• In general , we establish convergence using
the total variation norm,

‖µ1 − µ2‖TV = sup
A

|µ1(A)− µ2(A)|.

• and we want

‖
∫

Kn(x, ·)µ(dx)− π ‖TV

= sup
A
|
∫

Kn(x, A)µ(dx)− π(A) |

to be small.
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Theorem 4.2.1 If (Xn) is Harris positive
recurrent and aperiodic, then

lim
n→∞ ‖

∫
Kn(x, ·)µ(dx)− π ‖TV = 0

for every initial distribution µ.

• We thus take “Harris positive recurrent and
aperiodic” as equivalent to “ergodic”

• Convergence in total variation implies

lim
n→∞ |IEµ[h(Xn)]− IEπ[h(X)]| = 0

for every bounded function h.

• There are difference speeds of convergence

◦ ergodic (fast)

◦ geometrically ergodic (faster)

◦ uniformly ergodic (fastest)
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4.3 Limit theorems

• Ergodicity determines the probabilistic prop-
erties of average behavior of the chain.

• But we also want to do statistical inference,
which must reason by induction from the ob-
served sample.

• The fact that ‖P n
x −π‖ is close to 0 does not

bring direct information about

Xn ∼ P n
x

.

• We need LLNs and CLTs

• The classical LLNs and CLTs are not directly
applicable due to:

◦ The Markovian dependence structure be-
tween the observations Xi

◦ The non-stationarity of the sequence.
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Theorem 4.3.1 Ergodic Theorem –LLN

If the Markov chain (Xn) is Harris recur-
rent, then for any function h with E|h| <
∞,

lim
n→∞

1

n
h(Xi) =

∫
h(x)dπ(x),

• To get a CLT, we need more assumptions.
• For MCMC, the easiest is reversibility

Definition 4.3.2 A Markov chain (Xn) is
reversible if for all n

Xn+1|Xn+2 ∼ Xn+1|Xn.

• So the direction of time does not matter.

Theorem 4.3.3 If the Markov chain (Xn)
is Harris recurrent and reversible,

1√
N

 N∑
n=1

(h(Xn)− IEπ[h])
 L

; N (0, γ2
h) .

where

0 < γ2
h = IEπ[h

2
(X0)]

+2
∞∑

k=1
IEπ[h(X0)h(Xk)] < +∞.
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Monte Carlo Optimization

5.1 Introduction

• Differences between the numerical approach
and the simulation approach to the prob-
lem

max
θ∈Θ

h(θ)

lie in the treatment of the function h.

• Using deterministic numerical methods, the
analytical properties of the target function
(convexity, boundedness, smoothness) are of-
ten paramount.

• For the simulation approach, we are more
concerned with h from a probabilistic (rather
than analytical) point of view.
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Example 5.1.1 Minimization.

Consider minimizing

h(x, y) = (x sin(20y) + y sin(20x))2 cosh(sin(10x)x)

+ (x cos(10y)− y sin(10x))2 cosh(cos(20y)y) ,

with global minimum 0 at (x, y) = (0, 0).

• Many local minima.
• Standard methods may not find the global

minimum
• We can simulate from exp(−h(x, y)).
• Get the minimum from the resulting h(xi, yi)’s.

‖

• Use the stochastic gradient method with our
test function

• Results of three stochastic gradient runs for
the minimization of the function h in Exam-
ple 5.1.1 with different values of (αj, βj) and
starting point (0.65, 0.8). The iteration T is
obtained by the stopping rule ||θT−θT−1|| <
10−5.
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5in4in/work/short/mcmcv22/figures/bmp/gridmax.bmp
Figure 5.1.1. Grid representation of the function h(x, y) of Example 5.1.1 on [−1, 1]2.

αj 1/10j 1/100j 1/10 log(1 + j)
βj 1/10j 1/100j 1/j
θT (−0.166, 1.02) (0.629, 0.786) (0.0004, 0.245)

h(θT ) 1.287 0.00013 4.24× 10−6

mint h(θt) 0.115 0.00013 2.163× 10−7

Iteration 50 93 58
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• Simulated Annealing

◦ This name is borrowed from Metallurgy: A
metal manufactured by a slow decrease of
temperature (annealing) is stronger than a
metal manufactured by a fast decrease of
temperature.

• Fundamental idea: A change of scale, called
temperature, allows greater exploration h

• Rescaling partially avoids trapping in local
maxima.

• Given a temperature T > 0, generate

θT
1 , θT

2 ∼ π(θ) ∝ exp(h(θ)/T )

and approximate the maximum of h.

◦ As T ↓ 0, the values simulated concentrate
in a narrower and narrower neighborhood
of the local maxima of h
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• The Algorithm proposed by Metropolis et
al. (1953).

• Starting from θ0,

◦ ζ ∼ uniform in a neighborhood of θ0

◦ the new value of θ is generated by:

θ1 =

 ζ with probability ρ = exp(∆h/T ) ∧ 1
θ0 with probability 1− ρ,

where ∆h = h(ζ)− h(θ0). .

• Therefore,

◦ if h(ζ) ≥ h(θ0), ζ is accepted with proba-
bility 1

◦ if h(ζ) < h(θ0), ζ may still be accepted
with probability ρ 6= 0

• So if θ0 is a local maximum of h, the al-
gorithm escapes with a probability that de-
pends on T

• Usually, the simulated annealing algorithm
modifies the temperature T at each iteration.



38 MONTE CARLO OPTIMIZATION [ 5.1

• The EM Algorithm
• introduced by Dempster et al. (1977) to over-

come the difficulties in maximizing likelihoods
• taking advantage of the representation

g(x|θ) =
∫
Z f (x, z|θ) dz

and solving a sequence of easier maximiza-
tion problems whose limit is the answer to
the original problem.

• EM algorithm relates to MCMC algorithms
in the sense that it can be seen as a forerun-
ner of the Gibbs sampler in its Data Augmen-
tation version, replacing simulation by max-
imization.

• Suppose that we observe X1, . . . , Xn, iid from
g(x|θ) and want to compute

θ̂ = arg max L(θ|x) =
n∏

i=1
g(xi|θ).

• We augment the data with z, where X,Z ∼
f (x, z|θ) and note the identity

k(z|θ,x) =
f (x, z|θ)

g(x|θ)
,

where k(z|θ,x) is the conditional distribu-
tion of the missing data Z given the observed
data x.
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• This identity leads to the following relation-
ship between the complete-data likelihood

Lc(θ|xz) = f (x, z|θ)

and the observed data likelihood

L(θ|x).

For any value θ0,

log L(θ|x) = IEθ0[log Lc(θ|x, z)|θ0,x]

−IEθ0[log k(z|θ,x)|θ0,x],

where the expectation is with respect to k(z|θ0,x).

• the strength of the EM algorithm is that we
only have to deal with the first term on the
right side above, as the other term can be
ignored.

• The likelihood is increased at every iteration
- there are convergence guarantees
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• Denote the expected log-likelihood by

Q(θ|θ0,x) = IEθ0[log Lc(θ|x, z)|θ0,x].

• a sequence of estimators θ̂(j), j = 1, 2, . . ., is
obtained iteratively by

Q(θ̂(j)|θ̂(j−1),x) = max
θ

Q(θ|θ̂(j−1),x).

Algorithm A.2 –The EM Algorithm–

1. (the E-step) Compute

Q(θ|θ̂(m),x) = IEθ̂(m)
[log Lc(θ|x, z)] ,

where the expectation is with respect

to k(z|θ̂m,x) .

2. (the M-step) Maximize Q(θ|θ̂(m),x) in θ
and take

θ(m+1) = arg max
θ

Q(θ|θ̂(m),x).

The iterations are conducted until a fixed point
of Q is obtained.
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Example 5.1.2 Censored data
If f (x−θ) is the N (θ, 1) density, the censored
data likelihood is

L(θ|x) =
1

(2π)m/2
exp

−
1

2

m∑
i=1

(xi − θ)2
 [1− Φ(a− θ)]n−m

and the complete-data log-likelihood is

log Lc(θ|x, z) ∝ −1

2

m∑
i=1

(xi−θ)2−1

2

n∑
i=m+1

(zi−θ)2 ,

where the zi’s are observations from the trun-
cated Normal distribution

k(z|θ,x) =
exp{−1

2(z − θ)2}√
2π[1− Φ(a− θ)]

=
ϕ(z − θ)

1− Φ(a− θ)
, a < z.

At the jth step in the EM sequence, we have

Q(θ|θ̂(j),x) ∝ −1

2

m∑
i=1

(xi − θ)2

−1

2

n∑
i=m+1

∫ ∞
a (zi − θ)2k(z|θ̂(j),x) dzi,
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Differentiating with respect to θ yields

θ̂(j+1) =
mx̄ + (n−m)IE[Z|θ̂(j)]

n
,

where

IE[Z|θ̂(j)] =
∫ ∞
a zk(z|θ̂(j),x) dz = θ̂(j)+

ϕ(a− θ̂(j))

1− Φ(a− θ̂(j))
.

Thus, the EM sequence is defined by

θ̂(j+1) =
m

n
x̄+

n−m

n

θ̂(j) +
ϕ(a− θ̂(j))

1− Φ(a− θ̂(j))

 ,

which converges to the MLE θ̂. ‖

• A (sometime) difficulty with the EM algo-
rithm is the computation of Q(θ|θ0,x).

• To overcome this difficulty, use

Q̂(θ|θ0,x) =
1

m

m∑
i=1

log Lc(θ|x, z) ,

where Z1, . . . , Zm ∼ k(z|x, θ).

• When m → ∞, this quantity converges to
Q(θ|θ0,x).
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The Metropolis-Hastings Algorithm

6.1 Monte Carlo Methods based on Markov Chains

• We know it is not necessary to use a sample
from the distribution f to approximate the
integral ∫

h(x)f (x)dx ,

• Now we obtain X1, . . . , Xn ∼ f (approx)
without directly simulating from f .

◦ We use an ergodic Markov chain with sta-
tionary distribution f

• For an arbitrary starting value x(0), an er-
godic chain (X(t)) is generated using a tran-
sition kernel with stationary distribution f

• This insures the convergence in distribution
of (X(t)) to a random variable from f .

• For a “large enough” T0, X(T0) can be con-
sidered as distributed from f

• We thus produce a dependent sample X(T0), X(T0+1), . . .,
which is generated from f .
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6.2 The Metropolis–Hastings algorithm

• The algorithm starts with the objective (tar-
get) density f

• A conditional density q(y|x), called the in-
strumental (or proposal) distribution, is then
chosen.

•Algorithm A.3 –Metropolis–Hastings–

Given x(t),

1. Generate Yt ∼ q(y|x(t)).
2. Take

X(t+1) =


Yt with prob. ρ(x(t), Yt),
x(t) with prob. 1− ρ(x(t), Yt),

where

ρ(x, y) = min


f (y)

f (x)

q(x|y)

q(y|x)
, 1

 .
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Example 6.2.1 –Saddlepoint tail area
approximation–

• Saddlepoint approximation are useful for non-
central chi squared tail areas.

• An alternative is to sample Z1, . . . , Zm, from
the saddlepoint distribution, and use

P (X̄ > a)

=
∫ ∞
τ̂(a)

 n

2π

1/2
[K ′′

X(t)]
1/2

exp {n [KX(t)− tK ′
X(t)]} dt

≈ 1

m

m∑
i=1

II[Zi > τ̂ (a)] ,

◦ where KX(τ ) is the cumulant generating
function of X

◦ τ̂ (x) is the solution of K ′(τ̂ (x)) = x .

• We can derive an instrumental density to use
in a Metropolis–Hastings algorithm. Using a
Taylor series approximation,

exp {n [KX(t)− tK ′
X(t)]} ≈ exp

−nK ′′
X(0)

t2

2



◦ a first choice for an instrumental density is
the N (0, 1/nK ′′

X(0))
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• Use M-H with normal candidate density and

K ′′
X(t) = 2[p(1− 2t) + 4λ]/(1− 2t)3.

◦ The same set of simulated random variables
are used for all calculations.

◦ We avoid calculating the saddlepoint nor-
malizing constant

• Monte Carlo saddlepoint approximation of a
noncentral chi squared integral for p = 6 and
λ = 9, based on 10, 000 simulated random
variables.

interval renormalized exact Monte Carlo
saddlepoint

(36.225,∞) .0996 .1 .0992
(40.542,∞) .0497 .05 .0497
(49.333,∞) .0099 .01 .0098

‖
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• There are many other algorithms

◦ Adaptive Rejection Metropolis Sampling
◦ Reversible Jumps
◦ Langevin algorithms
◦ to name a few...





CHAPTER 7

The Gibbs Sampler

7.1 General Principles

• A very specific simulation algorithm based
on the target f .

• Uses the conditional densities f1, . . . , fp from
f

• Start with the random variable X = (X1, . . . , Xp)

• Simulate from the conditional densities,

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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•Algorithm A.4 –The Gibbs sampler–

Given x(t) = (x
(t)
1 , . . . , x(t)

p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x(t)

p ),
. . .

p. X(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 ),

then X(t+1) → X ∼ f .

◦ The densities f1, . . . , fp are called the full
conditionals

◦ these are the only densities used for simu-
lation

◦ Thus, even in a high dimensional problem,
all of the simulations may be univariate
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Example 7.1.1 –Cauchy-normal –
Consider the density

f (θ|θ0) ∝
e−θ2/2

[1 + (θ − θ0)2]ν
.

This is the posterior distribution resulting from
the model

X|θ ∼ N (θ, 1) and θ ∼ C(θ0, 1).

The density f (θ|θ0) can be written as the
marginal density

f (θ|θ0) ∝
∫ ∞
0 e−θ2/2 e−[1+(θ−θ0)

2] η/2 ην−1 dη,

and can therefore be completed as

g(θ, η) ∝ e−θ2/2 e−[1+(θ−θ0)
2] η/2 ην−1,

which leads to the conditional densities

g1(η|θ) = Ga

ν, 1 + (θ − θ0)
2

2

 ,

g2(θ|η) = N
 θ0η

1 + η
,

1

1 + η

 .

Note that the parameter η is completely mean-
ingless for the problem at hand but serves to
facilitate computations. ) ‖
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• The Gibbs sampler is particularly well suited
to hierarchical models.

• Such models naturally appear in Bayesian
analysis

Example 7.1.2 –Hierarchical models in
animal epidemiology–

• Schukken et al. (1991) obtained counts of the
number of cases of clinical mastitis in 127
dairy cattle herds over a one year period.

◦Xi, i = 1, · · · , m, denote the number of
cases in herd i

◦Xi ∼ P(λi), where λi is the underlying rate
of infection in herd i

◦ Lack of independence here (mastitis is in-
fectious) might manifest itself as overdis-
persion.

◦ To account for this, they used the model

Xi ∼ P(λi)
λi ∼ Ga(α, βi)
βi ∼ IG(a, b),

◦ The Gibbs sampler

λi ∼ π(λi|x, α, βi) = Ga(xi + α, [1 + 1/βi]
−1)

βi ∼ π(βi|x, α, a, b, λi) = IG(α + a, [λi + 1/b]−1)

gives the posterior density of λi, π(λi|x, α)

‖



CHAPTER 8

Diagnosing Convergence

8.1 Stopping the Chain

• Convergence results do not tell us when to
stop the MCMC algorithm and produce our
estimates.

• We now look at methods of controlling the
chain in the sense of a stopping rule to guar-
antee that the number of iterations is suffi-
cient.

• From a general point of view, there are three
(increasingly stringent) types of convergence
for which assessment is necessary.
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◦ Convergence to the Stationary Distribu-
tion

� a minimal requirement for an algorithm that
approximates simulation from f

◦ Convergence of Averages Here we are con-
cerned with convergence of the empirical av-
erage

1

T

T∑
t=1

h(θ(t)) → IEf [h(θ)].

� This type of convergence is most relevant in
the implementation of MCMC algorithms.

◦ Convergence to iid Sampling

� This measures how close a sample (θ
(t)
1 , . . . , θ(t)

n )
is to being iid.

� the goal is to produce variables θi which are
(quasi-)independent.
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8.2 Monitoring Convergence to the Stationary Distribution

•Graphical Methods
• A natural empirical approach to convergence

control is to draw pictures of the output of
simulated chains

• This may detect deviant or nonstationary be-
haviors

• A first idea is to draw the sequence of the
θ(t)’s against t

• However, this plot is only useful for strong
nonstationarities of the chain.
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Example 8.2.1 –Witch’s hat distribution–
Consider

π(θ|y) ∝
{
(1− δ) σ−de−‖y−θ‖2/(2σ2) + δ

}
IIC(θ), y ∈ IRd

when θ is in to the unit cube C = [0, 1]d.

• This density has a mode which is very con-
centrated around y for small δ and σ
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• The strong attraction of the mode gives the
impression of stationarity for the chain

• The chain with initial value 0.9098, which
achieves a momentary escape from the mode,
is actually atypical.

• This example has become a benchmark to
evaluate the performances of different meth-
ods of convergence. control.

‖
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8.3 Monitoring Convergence of Averages

•Multiple Estimates

Example 8.3.1 – Cauchy posterior – For
the posterior distribution

π(θ|x1, x2, x3) ∝ e−θ2/2σ2 3∏
i=1

1

1 + (θ − xi)2
.

a completion Gibbs sampling algorithm can
be derived by introducing three artificial vari-
ables, η1, η2, η3, such that

π(θ, η1, η2, η3|x1, x2, x3) ∝ e−θ2/2σ2 3∏
i=1

e−(1+(θ−xi)
2)ηi/2,

resulting in the Gibbs sampler (i = 1, 2, 3)

ηi|θ, xi ∼ Exp

1 + (θ − xi)
2

2

 ,

θ|x1, x2, x3, η1, η2, η3 ∼ N


∑
i ηixi∑

i ηi + σ−2
,

1∑
i ηi + σ−2

 .
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• The figure illustrates the efficiency of this al-
gorithm by exhibiting the agreement between
the histogram of the simulated θ(t)’s and the
true posterior distribution

• If the function of interest is h(θ) = exp(−θ/σ),
the different approximations of IEπ[h(θ)] can
be monitored.
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• The figure graphs the convergence of four es-
timators versus T (plus one more).

• The strong agreement of ST , SC
T indicates

convergence
• The bad behavior the importance sampler is

most likely associated with an infinite vari-
ance.

‖



CHAPTER 9

Implementation in Missing Data Models

9.1 Introduction

• Missing data models are a natural applica-
tion for simulation

• Simulation replaces the missing data part so
that one can proceed with a “classical” infer-
ence on the complete model.

• The EM algorithm that Dempster et al. (1977)
first described a rigorous and general formu-
lation of statistical inference though comple-
tion of missing data.

• Now we illustrate the potential of Markov
Chain Monte Carlo algorithms in the analysis
of missing data models



62 IMPLEMENTATION IN MISSING DATA MODELS [ 9.1

Example 9.1.1 – Probit Regression –

• Another situation where grouped data ap-
pears in a natural fashion is that of qualita-
tive models.

• We look at the probit model, often consid-
ered as a threshold model.

• We observe Yi ∼ Bernoulli{0, 1} and link
them to a vector of covariates xi by the equa-
tion

pi = Φ(xt
iβ) , β ∈ IRp.

where Φ is the standard normal cdf.

• The Yi’s can be thought of as delimiting a
threshold.

◦ Assume there are latent (unobservable) con-
tinuous random variables Y ∗

i where

Yi =
 1 if Y ∗

i > 0,
0 otherwise.

◦ Thus, pi = P (Yi = 1) = P (Y ∗
i > 0), and

we have an automatic way to complete the
model →
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• Given

◦ prior distribution Np(β0, Σ) on β
◦ the posterior distribution π(β|y1, . . . , yn, x1, . . . , xn)

is computed by

Algorithm A.5 –Probit posterior distribution–

1. Simulate

y∗i ∼
N+(xt

iβ, 1, 0) if yi = 1,
N−(xt

iβ, 1, 0) if yi = 0,
(i = 1, . . . , n)

2. Simulate

β ∼ Np

(Σ−1 + XX t)−1(Σ−1β0 +
∑
i
y∗i xi), (Σ

−1 + XX t)−1
 .

where

◦ N+(µ, σ2, u) and N−(µ, σ2, u) denote the
normal distribution truncated on the left in
u, and the normal distribution truncated on
the right in u, respectively

◦X is the matrix whose columns are the xi’s.

‖
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• Incomplete observations arise in numerous
settings.

◦ A survey with multiple questions may in-
clude nonresponses to some personal ques-
tions;

◦ A calibration experiment may lack obser-
vations for some values of the calibration
parameters;

◦ A pharmaceutical experiment on the after-
effects of a toxic product may skip some
doses for a given patient.

• The analysis of such structures is compli-
cated by the fact that the failure to observe
is not always explained.

• If these missing observations are entirely due
to chance, it follows that the incompletely
observed data only play a role through their
marginal distribution.

• However, these distributions are not always
explicit and a natural approach leading to
a Gibbs sampler algorithm is to replace the
missing data by simulation.
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Example 9.1.2 –Non-ignorable non-response–

• Average incomes and numbers of responses/non-
responses to a survey on the income by age,
sex and marital status. (Source: Little and
Rubin 1987.)

Men Women
Age Single Married Single Married

< 30 20.0 21.0 16.0 16.0
24/1 5/11 11/1 2/2

> 30 30.0 36.0 18.0 −
15/5 2/8 8/4 0/4

• The observations are grouped by average, and
we assume an exponential shape for the in-
dividual data,

y∗a,s,m,i ∼ Exp(µa,s,m)

with µa,s,m = µ0 + αa + βs + γm ,

where

◦ 1 ≤ i ≤ na,s,m

◦ αa (a = 1, 2) corresponds to age (junior/senior)
◦ βs (s = 1, 2) corresponds to sex (fem./male)
◦ γm (m = 1, 2) corresponds to family (sin-

gle/married)

• The model is unidentifiable, but that can be
remedied by constraining α1 = β1 = γ1 = 0.



66 IMPLEMENTATION IN MISSING DATA MODELS [ 9.1

• A more difficult and important problem ap-
pears when nonresponse depends on the in-
come, say in the shape of a logit model,

pa,s,m,i =
exp{w0 + w1y

∗
a,s,m,i}

1 + exp{w0 + w1y∗a,s,m,i}
,

where

pa,s,m,i denotes the probability of nonresponse

and

(w0, w1) are the logit parameters.

• The likelihood of the complete model is

∏
a=1,2
s=1,2
m=1,2

na,s,m∏
i=1

exp{z∗a,s,m,i(w0 + w1y
∗
a,s,m,i)}

1 + exp{w0 + w1y∗a,s,m,i}
(µ0+αa+βs+γm)ra,s,m

× exp
{
−ra,s,mya,s,m(µ0 + αa + βs + γm)

}
where

◦ z∗a,s,m,i is the indicator of a missing obser-
vation

◦ na,s,m is the number of people by category
◦ ra,s,m is the number of responses by cate-

gory
◦ ya,s,m is the average of these responses by

category
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• The completion of the data then proceeds by
simulating

◦ The y∗a,s,m,i’s from

π(y∗a,s,m,i)

∝ exp(−y∗a,s,m,i µa,s,m)
exp{z∗a,s,m,i(w0 + w1y

∗
a,s,m,i)}

1 + exp{w0 + w1y∗a,s,m,i}
,

which requires a Metropolis–Hastings step.
◦ The parameters are simulated from∏

a=1,2
s=1,2
m=1,2

(µ0 + αa + βs + γm)ra,s,m

× exp
{
−ra,s,mya,s,m(µ0 + αa + βs + γm)

}

for µ0, α2, β2, γ2, possibly using a gamma
instrumental distribution.

◦ And (w0, w1) from

∏
a=1,2
s=1,2
m=1,2

na,s,m∏
i=1

exp{z∗a,s,m,i(w0 + w1y
∗
a,s,m,i)}

1 + exp{w0 + w1y∗a,s,m,i}

which corresponds to a logit model.

‖
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9.2 Finite mixtures of distributions

•Mixtures of distributions

f̃ (x) =
k∑

j=1
pj f (x|ξj) ,

where p1+. . .+pk = 1, are useful in practical
modeling.

• They can be challenging from an inferential
point of view, that is, when estimating the
parameters pj and ξj.

• The likelihood is quite difficult to work with,
being of the form

L(p, ξ|x1, . . . , xn) ∝
n∏

i=1


k∑

j=1
pj f (xi|ξj)

 ,

containing kn terms.

• A solution is to take advantage of the miss-
ing data structure, and associate with ev-
ery observation xi an indicator variable zi ∈
{1, . . . , k} that indicates which component
of the mixture xi comes from. The demarginal-
ization (or completion) of the mixture model
is then

zi ∼Mk(1; p1, . . . , pk), xi|zi ∼ f (x|ξzi
) .

• The likelihood of the completed model is

`(p, ξ|x∗i , . . . , x∗i ) ∝
n∏

i=1
pzi

f (xi|ξzi
)
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=
k∏

j=1

∏
i;zi=j

pj f (xi|ξj)
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• A Gibbs sampler is then

Algorithm A.6 –Mixture simulation–

1. Simulate zi (i = 1, . . . , n) from

P (zi = j) ∝ pj f (xi|ξj) (j = 1, . . . , k)

and compute the statistics

nj =
n∑

i=1
IIzi=j , njxj =

n∑
i=1

IIzi=jxi .

2. Generate (j = 1, . . . , k)

ξ ∼ π

ξ|λjαj + njxj

λj + nj
, λj + nj

,
p ∼ Dk(γ1 + n1, . . . , γk + nk) .

Example 9.2.1 – Normal mixtures – In
the case of a mixture of normal distributions,

f̃ (x) =
k∑

j=1
pj

e−(x−µj)
2/(2τ2

j )

√
2π τj

,

the conjugate distribution on (µj, τj) is

µj|τj ∼ N
(
αj, τ

2
j /λj

)
, τ 2

j ∼ IG
λj + 3

2
,
βj

2


and the two steps of the Gibbs sampler are as
follows →
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Algorithm A.7 –Normal mixture–

1. Simulate (i = 1, . . . , n)

zi ∼ P (zi = j) ∝ pj exp
{
−(xi − µj)

2/(2τ 2
j )

}
τ−1
j

and compute the statistics (j = 1, . . . , k)

nj =
n∑

i=1
IIzi=j, njxj =

n∑
i=1

IIzi=jxi, s2
j =

n∑
i=1

IIzi=j(xi−xj)
2 .

2. Generate

µj|τj ∼ N
λjαj + njxj

λj + nj
,

τ 2
j

λj + nj

 ,

τ 2
j ∼ IG

λj + nj + 3

2
,
βj + s2

j

2

 ,

p ∼ Dk(γ1 + n1, . . . , γk + nk) .

‖
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Example 9.2.2 –Stochastic Volatility–
• Stochastic volatility models are popular in fi-

nancial applications, especially in describing
series with sudden changes in the magnitude
of variation of the observed values.

• They use a latent linear process (Y ∗
t ), called

the volatility, to model the variance of the
observables Yt.

• Let Y ∗
0 ∼ N (0, σ∗

2
) and, for t = 1, . . . , T ,

define 
Y ∗

t = %Y ∗
t−1 + σ∗ε∗t−1 ,

Yt = eY ∗
t /2εt ,

where εt and ε∗t ∼ N (0, 1).

• The observed likelihood L(%, σ∗|y0, . . . , yT )
is obtained by integrating the complete-data
likelihood

Lc(%, σ∗|y0, . . . , yT , y∗0, . . . , y
∗
T )

∝ exp−
T∑

t=0

{
y2

t e
−y∗t + y∗t

}
/2

×(σ∗)−T+1 exp−
(y∗0)2 +

T∑
t=1

(y∗t − %y∗t−1)
2
 /2(σ∗)2 .
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• The figure shows a typical stochastic volatil-
ity behavior for σ∗ = 1 and % = .9.

• Likelihood and Bayesian inference on this model
can be done with the EM algorithm or the
Gibbs sampler

‖


